Multidimensional van der Corput and sublevel set estimates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional Van Der Corput and Sublevel Set Estimates

If a function has a large derivative, then it changes rapidly, and so spends little time near any particular value. This paper is devoted to quantifying that principle for functions of several variables, particularly as it pertains to two problems in harmonic analysis. Along the way we shall encounter diverse problems and techniques, and shall be led to issues distinctly combinatorial in nature...

متن کامل

Multidimensional Decay in Van Der Corput Lemma

In this paper we present a multidimensional version of the van der Corput lemma where the decay of the oscillatory integral is gained with respect to all space variables, connecting the standard one-dimensional van der Corput lemma with the stationary phase method.

متن کامل

Sharp Van Der Corput Estimates and Minimal Divided Differences

1. Sublevel set estimates The importance of sublevel set estimates in van der Corput lemmas was highlighted by A. Carbery, M. Christ, and J. Wright [3], [4]. We find the sharp constant in the following sublevel set estimate. We will use this in Section 4 to prove an asymptotically sharp van der Corput lemma. The constants Cn take different values in each lemma. Lemma 1. Suppose that f : (a, b) ...

متن کامل

Cyclic Shifts of the Van Der Corput Set

In [13], K. Roth showed that the expected value of the L discrepancy of the cyclic shifts of the N point van der Corput set is bounded by a constant multiple of √ logN, thus guaranteeing the existence of a shift with asymptotically minimal L discrepancy, [11]. In the present paper, we construct a specific example of such a shift.

متن کامل

Van der Corput Sequences and Linear Permutations

This extended abstract is concerned with the irregularities of distribution of onedimensional permuted van der Corput sequences that are generated from linear permutations. We show how to obtain upper bounds for the discrepancy and diaphony of these sequences, by relating them to Kronecker sequences and applying earlier results of Faure and Niederreiter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 1999

ISSN: 0894-0347,1088-6834

DOI: 10.1090/s0894-0347-99-00309-4